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This paper presents several analytical solutions for three-dimensional solute transport in semi-
infinite porous media with unidirectional flow using first-type (or concentration) and third-type (or flux)
boundary conditions at the inlet location of the medium. The solutions may be used for predicting
solute concentrations in homogeneous media, verification of more comprehensive numerical models.
and laboratory or field determination of solute transport parameters. The transport equation incorpo-
rates terms accounting for advection, dispersion, zero-order production, and first-order decay.
General solutions were derived for an arbitrary initial distribution and solute input with the help of
Laplace, Fourier, and Hankel transforms. Specific solutions are presented for rectangular and circular
solute inflow regions, as well as for solutes initially present in the form of parallelepipedal or
cylindrical regions of the medium. The solutions were mathematically verified against simplified
analytical solutions. Examples of concentration profiles are presented for several solute transport
parameters using both first- and third-type boundary conditions. A mass balance constraint is defined
based on a prescribed solute influx; the third-type condition is shown to conserve mass whereas the
first-type condition was found to always overestimate resident solute concentrations in the medium.

INTRODUCTION

Concern about contamination of the subsurface environ-
ment has greatly stimulated research of solute transport
phenomena in porous media. Subsurface transport is gener-
ally described with the advection-dispersion equation (ADE)
which can be derived from mass balance principles. In the
deterministic approach with constant transport parameters
with respect to time and position the ADE is linear and
explicit closed-form solutions can generally be derived.
Many solutions for the ADE are now available for a large
number of initial and boundary conditions for one-
dimensional transport [e.g., van Genuchten and Alves, 1982]
and a smaller number of conditions for two- and three-
dimensional transport [Cleary and Ungs, 1978; Carnahan
and Remer, 1984; Javandel et al., 1984, Wexler, 1989].
Because of the large variability of flow and transport prop-
erties in the field, the often transient nature of the flow
regime, and the nonideal nature of applicable initial and
boundary conditions, the usefulness of analytical solutions is
often limited and numerical methods may be needed. Still,
analytical solutions remain useful for validating numerical
results, for providing initial estimates of pollution scenarios,
for sensitivity analyses to investigate the effect of various
transport parameters, and for extrapolative purposes over
large times or distances where the use of numerical models
becomes impractical.

One common scenario for soil or groundwater contamina-
tion involves the migration of pollutants, via advection and
dispersion, from a diffuse or bounded source at the soil
surface, or from a buried source close to the soil surface,
into the subsurface environment. To solve these cases
analytically, we require the pore water velocity and the
dispersion coefficients to be constant in time and space and
assume the medium be semi-infinite in the direction of flow
and infinite perpendicular to the flow direction.
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Compared to the large body of literature pertaining to
analytical solutions for one-dimensional transport, relatively
little attention has been paid to analytical solutions of the
two- or three-dimensional ADE. Most studies involving
multidimensional transport examine instantaneous solute
injection into a semi-infinite or infinite medium [Cleary,
1973; Kuo, 1976; Yeh and Tsai, 1976, Wilson and Miller,
1978; Prakash, 1984]. Solutions of this type can be readily
extended to continuous solute application over a finite time.
Typically, the contaminant source (being a point, line, plane,
or parallelepiped) is located at the origin of the coordinate
system with flow parallel to the infinite horizontal coordinate
(e.g., a river or aquifer). Solutions for heat flow problems
can often be directly applied [e.g., Moltvaner and Killey,
1988] or readily adapted for such infinite systems. Several
solutions have also been reported for cases where the solute
is applied during a finite time at the flow inlet during a finite
period of time [Harleman and Rumer, 1963, Bruch and
Street, 1967, Ogata, 1969; Shen, 1976, Sagar, 1982; Batu
and van Genuchten, 1990]. Most of these solutions assume a
first- or concentration-type condition rather than a third- or
flux-type condition which is more appropriate if volume-
averaged concentrations are considered [van Genuchten and
Parker, 1984; Tang and Peaceman, 1987, Chen, 1987]. A
variety of mathematical techniques have been employed to
derive these analytical solutions for multidimensional trans-
port. Among them are Green’s functions [Yeh and Tsai,
1976; Lindstrom and Boersma, 1989], separation of variables
[Bruch and Street, 1967], Laplace transforms [Chen, 1987],
and Fourier transforms [Cleary, 1973].

The main objective of this paper is to derive analytical
solutions for the three-dimensional ADE during one-
dimensional flow in a three-dimensional semi-infinite me-
dium using a straightforward solution procedure. The trans-
port equation consists of terms describing linear equilibrium
adsorption, zero-order production and first-order decay. The
ADE is solved subject to both first- and third-type inlet
boundary conditions, and assuming arbitrary initial and inlet
concentration distributions. Analytical solutions will be de-
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TABLE 1.
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Notation for Laplace, Fourier, and Hankel Transforms

Operator

Variable Transformation

£ ]=fmexp(—st)[ 1dt

[i]
& ]=fexp(—px)[ ) dx
0

Fl 1= f ) f " exp [ilay + BN 1dv dz

Hl 1= fm adolar ldr

0

Clx,y, 2, )= Clx, ¥, 2, 5)

Cx,y,z,5) = Cp,y, 2,5

TPy, z, 50— Cp, a, B, 5)

CXp, r, 5) > C"(p, 7, 9

rived using several integral transforms to reduce the partial
differential equation into simplified algebraic expressions. The
approach is shown to be applicable to a broad class of transport
problems. General solutions are derived for transport using
Cartesian and cylindrical coordinate systems. The results are
then used to obtain analytical solutions for five specific com-
binations of initial and boundary value concentration profiles.

Previous work has shown that analytical solutions for first-
and third-type inlet conditions can be associated with flux-
and volume-averaged concentrations, respectively {van Ge-
nuchten and Parker, 1984]. Hence we shall derive here
solutions for both types of conditions, although concentrations
in this study are always assumed to be volume-averaged unless
stated otherwise. A secondary objective of this paper is to
investigate mass balance errors resulting from the use of
inappropriate boundary conditions. This secondary objective is
an extension of the work by Batu and van Genuchten [1990}]
who showed that analytical solutions for a third-type condition
preserves mass in case of volume-averaged concentrations.
These authors did not provide expressions for mass balance
errors when a first-type condition was invoked.

MATHEMATICAL APPROACH

Cuartesian Coordinates

Transport of a solute, subject to linear retardation and
zero- and first-order rate processes, in a homogeneous and
isotropic medium during one-dimensional steady state flow
with three-dimensional dispersion is given by [e.g., Bear,
1979]:

aC
at

a’C
y 3_}’2

alC aC b
— -y —+
*ox2 Y oex
3%C
+DZE‘Z—2—;.LC+/\ n

>0,0<x<®, —v<y<o — vl z<®

where R is the retardation factor; C is the resident solute
concentration (ML ~3); r is time (T); x is the position (L) in the
direction of flow; y and z are rectangular coordinates perpen-
dicular to the flow direction (L); D,, D,, and D, are dispersion
coefficients (L2T ~') in the x, y, and z directions, respectively;
v is the pore water velocity (LT™"); w is a general first-order
rate coefficient for decay (T '); and A is a general zero-order
rate coefficient for production (ML 3T ).

The initial and boundary conditions are

Clx,y,2z,00=fx,y, 2) (2)
aC
vC ~ 8D, — =vg(y, z, 1)
0x
x =0
8 =0 first type
6 =1 third type 3
aC
—(®, ¥, 2, 1)=0 4)
ax
aC
—(x, x%, 2,1 =0 (5)
dy
alC
—(x,y, 0, 1) =0 (6)
9z

where f and g are arbitrary concentration profiles that will be
specified later to illustrate pertinent transport problems.

The solution of (1), subject to (2) through (6), was
achieved using Laplace transforms with respect to x and ¢
and a double Fourier transform with respect to y and z. This
procedure combines the solution technique for the one-
dimensional ADE employed by Lindstrom and Boersma
[1971] and the use of multiple integral transforms for multi-
dimensional transport problems {cf. Leij and Dane, 1990].
Table 1 lists the various integral transforms used for solving
the above problem, as well as the Hankel transform, ¥,
which will be used later for cylindrical coordinate systems.
Note that p and s in Table 1 are the Laplace variables for x
and 1, respectively, and that « and g8 are Fourier transform
variables for y and z, respectively. Detailed discussions of
these transforms are given by Spiegel [1965] and Sneddon
[1972], among others.

Application of the Laplace operator with respect to ¢ and
use of initial condition (2), results in the following transfor-
mation of (1):

RGC—f)=D a’C  oC b 9:C
— = —— —-+ —
s ) o922 Y ax Y gy?
D —BZC_ c A 7
+ —uC+ -
z 622 I3 B €

For brevity, the transforms of the accompanying boundary
conditions are not given. The Laplace transform of (7) with
respect to x, using condition (3), yields
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L~ _ aC
R(sC* ~f*) = Dx[pzc" -(1- 6)[1)5 + i 0, y, z, S)J

2~x
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a:C* o A
—_— +— 8
az2 M ps (8)

+D,

We proceed by applying the double Fourier transform.
Assuming that C* and its first derivative with respect to y
and z vanish if y - +x or z = *, the Fourier transform
of (8) is given by

R(sCV% = f7%) = Dx{pzc‘m - (1-8)

e

dx

'[P@”‘F ©, a, B, S)}

- 8pCY%(0, a, B, s)}

+ v[§”* = pC*Y]
- (a’D, + B*D,)C*
yz
—uCP — ©)
pS

The following explicit expression for C*** can be readily
derived [e.g., Lindstrom and Boersma, 1971]:

_ 1 .
C”4p, a, B, 5) =(—m [(] - 5)[pgy~

dac’:
+ ™ 0, a, B, 5)|[+8pC7%0, a, B, s)
1 Az
——[ug"z+Rf”z+—“ (10)
D, ps
where
A= —v/(2D,) (11a)
B=[A+(a’D,+ B’D .+ Rs + w)ID,]"?  (11b)

The transformed concentration is obtained directly from an
algebraic equation (equation (10)) rather than a differential
equation.

The concentration in the regular space-time domain is
derived via subsequent inversions of the Laplace and Fou-
rier domain solutions. First, we invert with respect to p by
applying the operator £, '. Using the shifting property, the
convolution theorem, and a table of Laplace transforms
[Spiegel, 1965], we obtain

1
C'x, a, B, 5) =3 [(1 - 8) g’ + 8C4(0, a, B, s5)]

~exp (—Ax)[B cosh (Bx) — A sinh (Bx)]
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1 I —s dC’* vg**

+E(_)dx (O’a’B‘S)_Dx
(—Ax) sinh (Bx) - — f‘[f”(g 8)
“€Xp {(—AX) sIn X) — - , a,
BD, |,

A

+7§ exp [~A(x — £)] sinh [B(x — £)] d¢ (12)

Next (4) is invoked to evaluate C*3(0, a, B, s) and
dC?%/dx(0, a, B, s) as outlined in the appendix. The
resulting expressions are substituted in (12), which in turn
can be rewritten as

C(x, a, B, 3)

9 exp [£(A - B)] dé

dv
B-A

_exp [-x(A — B)] [=
- 2BD, f

X

+ exp [—x(A + B)][g‘]”z((l -8)+

+

28D, | |,

fx 9 exp [£(A + B)] d&

+ 68-_—A—(1—6) L ® exp [(é(A — B)] d¢

(13)

where

9 = RPUE, a, 3)+T (14)

This solution is inverted to the real time domain by employ-
ing the operator &£ ,"' . Using the table of Laplace transforms
by van Genuchten and Alves [1982] and evaluating A and B
leads to

C(x, a, B, 1) = Jl gt -1, a, B){(l - 8) :_—( ¥ y(r)

0
Rx+ vt
2‘1’](7') - ‘Pz(']’) erfc —_(4RDX7)”2 dr

+ fc {f”(f, a, B)[(1 = 8)¥3(NW¥,(1) +28¥,()¥ ()]

0
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0
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where
v R 12 Rx? -2vx~r 6
i) = 47D, 7 cxp 4D 7 (16a)
v v vlr + 4va 166
(") =25 4RD, (166)
R§ +2véT\ | Rx¢
Wi(7) = exp ( iD.7 ) (21) T) (16¢)
Ré+20ér Rx¢
Va(7) = exp (__—4D_XT__) cosh (ZDXT) (16d)
y =[v2+4D,(a’D, + B*D,+ w)(4RD,) (1)

Finally, the inverse Fourier operator is applied. We will
use the convolution theorem for the Fourier transform:

vir ur
4D, R

F, g7t =1, a, B) exp (- v*r]—exp(

l x o
™ f—m J’—m

2
2 lavd
-exp | — -
P ( aD, 4017) van
where v and 7 are dummy variables. Application of (18)
leads to the following general solution:

C(x, y,zt)—jj f gt —1,y— v, z2— n)®(7)
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o R \" (Rx — v1)?
2(7) = wD. P 4RD T -

and where erfc denotes the complementary error function.

R§2 +2véT
4D, T

(20h)

Cylindrical Coordinates

If the solute is applied from a circular source or if the
solute is initially present in a cylindrical part of the medium,
it is convenient to rewrite (1) in cylindrical coordinates:

aC a%:C aC D, a | aC

—=D, —-v r—
ot T ax? ax

—uC+ A
ar ®

t>0,0<x<e, <r<« (21)

where x remains the direction of flow, and r is the cylindrical
coordinate perpendicular to the flow direction. The transfor-
mation from (1) to (21) makes the assumption that transverse
dispersion in any direction can be characterized by the same
transverse dispersion coefficient, D,. By contrast, (1) is
more flexible by allowing different values for the transverse
dispersion coefficients, D, and D,. The solution domain is
now defined by (x = 0; r = 0). The initial boundary
conditions are

C(x, r, 0)=flx, r) (22)
C-sD aC 3 8 =0 first type
g Tax ) _ o =vglr. 1) 8 =1 third type
(23)
—(® r )= (24)
ax
aC
—(x, %, 1) = (25)
ar

The solution procedure for this problem resembles the
methodology for Cartesian coordinates. Again, the Laplace
transforms with respect to x and r are used but instead of
using a Fourier transform the zero-order Hankel transform
with respect to r is applied. The latter transform is listed in
Table 1, where J, denotes the Bessel function of the first
kind of order zero and o is the transformation variable. Since
the Hankel and Fourier transforms are guite similar, many of
the results for Cartesian coordinates can be directly applied
to the solution of the ADE for cylindrical coordinates. For
our conditions, using the definition of the Hankel transform
and integrating by parts, we have

[1 d ( dé‘)
%0 - \r
rdr dr

Application of the two Laplace transforms and the Hankel
transform leads to

= —o’C¥ (26)

C'(p.o,s)=

RN (o dcC’
(p+A}2~E2 ( N pg +_;,;(0,0'7 5)

_ 1 AT
+8pCT(0, o, 5) —— (v§'+Rf’"+—>} (27)
D DS

X
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Fig. 1.

aly.2) [Co y<0 and z<0
0 otherwise
t =0
sy = [Co Irl<a anslz] <
otherwise
f =0

Co vl <az|<b
X, < x < x,
0 otherwise

t{x,y,z2) =

9 =0

olr) = [ o f<a
r>a
f =20
ro=/ye 22
’ 0 otherwise

Schematic of inlet and initial solute distributions for five selected cases: (1) diffuse source in quadrant of soil

surface, (2) rectangular source at the soil surface, (3) parallelepipedal initial distribution, (4) circular source at the soil

surface, (5) cylindrical initial distribution.

with

E=[A%+ (oD, + Rs + n)/D,]"? (28)
The Laplace inversions are similar to those for the Carte-
sian coordinates and results analogous to (13) and (15) were
obtained. The Hankel inversion needs to be applied to all
terms containing g¢'(+ — 71, o), f(§, o), and A". The

inversion operator is formally written as
# ' 1= f [ JoJylor) do 29)

0

Consider the inversion of the ¢"(t — 1, &) term. Substitution

of this term into (29) and evaluating the ensuing integral
according to Carslaw and Jaeger [1959, p. 460], yields

5
£ O’"D,T
git—7,0)exp |- alylor) do
0 R

= Rg(t — 7, p) R(r*+ pH\ [ Rrp
= —exp | — I p dp
0 2D,7 4D, 2D,

r

(30)

where I, denotes the modified or hyperbolic Bessel function
of the first kind of order zero, and p is a dummy variable.
Equation (30) can be directly applied to the inversion of the
terms containing f'(£&, o) and A". The general solution can
now be written as
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TABLE 2a. Analytical Solutions for Selected Transport Problems
C(x,y,z,)orC(x, r, t)
Case First Type (F) Third Type (T)
l Co X ay i) dr + 2 | Aoy d Co 2 oy dr+ = [ Ay d
40 Wr 7}y dr szr 40R37|772RL4(T)7
Co Co (1 v A [t
2 Y . A](T)Fz(T) dr + — J A7) d7 T . R As(7)Ty(7) d7 + R J; A7) dr
Co A [t
3 As(OT2(1) + g Az('r) dr — Ae()F2(0) + — A7) dr
8 2R |,
1 a Y A t ]
4 j j - A(r)E(p, 7) dp dT + —f f Ay7)E(p, 1) dp dT Coj J’ EAJ(T)E(P, 7) dp drt +l_€f f E(p, A7) dp dr
o Jo
5 Co f A)E(p, 1) dp + —f J- E(p, 1)A4(7) dp dr
0

a A t oo
Co | As(NE(p, ) dp + — AxT)E(p, 7) dp d1
0 2R 0Jo

See Table 2b for parameters.

C(x, r, t)—ff gt — 7, p)E(p, 7)
. exp | ———}i(1 - §) —+ 8 —
wD, T

4RD 7 R
p? vx
RD. exp l_): erfc W dp dr
1-6 h Rxg
f f A&, P)E(p, D|Do(0)| (1 — 8) sin D
+ 26 cosh Rx¢ s v vx
COS 2Dxt b—xexp D——x

» R(x+ &) + vt t A
““\"arp™ )|* J; R

Rx + vt
-8

Z(p, 7)

<I>2(7)((1 - 8)

inh (222) 4 26 cosh |5 5 —
* Sin - —_—
2D, S \2p .- D,

vx " R(x+ &)+ wvr deb do d 31

P b, "\ "@rD, "7 T(dpde (D

where

pR putr R +p?h Rrp
Ep. 7)= ~ .
T exp( R “ap. o\, @Y

Note that we chose A to be independent of position.

APPLICATIONS

Some Common Transport Problems

The previous general solutions were used to derive spe-
cific analytical solutions for several simple transport prob-
lems. Figure 1 illustrates five cases, three of which involve a
Cartesian coordinate system, and two a cylindrical system.
For cases 1, 2, and 4 the solute is applied over different inlet
areas to an initially solute free medium, while for cases 3 and

5 solute free water is applied to a soil where the solute is
initially distributed uniformly in a bounded region of the soil
(i.e., a paralellepiped or a cylinder). Analytical expressions
for the solute concentrations are obtained by substituting the
expressions for f and g, specified in Figure 1, into (19) and
(31). The solutions for the five cases, using first- or third-type
boundary conditions, are listed in Table 2.

A number of integrals that were encountered during the
derivation of the specific solutions in Table 2 were evaluated
using the following property of the Laplace transform

_1[f( 5) f Fio) dr
s 0

and the table of Laplace transforms in van Genuchten and
Alves [1982]. Other useful integrals are given by Abramowitz
and Stegun [1970] (i.e., 7.4.33 and 35), whereas the remain-
der were evaluated numerically using Gauss-Chebyshev
quadrature [Leij et al., 1991]. The modified Bessel function,
I, was obtained according to Press et al. [1986]. The
computer program 3DADE to evaluate the solutions in Table
2 is available upon request.

The five examples are merely illustrations of how analyt-
ical solutions can be derived from the general solutions.
Other examples, for example, pulse-type changes in the
influent concentration or two-dimensional transport, can be
treated in a similar manner. Transport problems with more
complicated initial (f) and boundary (g) concentration
distributions can also be solved using the general analytical
solutions; however, the need for additional numerical inte-
gration may make direct numerical solution of the transport
problem more attractive.

(33)

Validation and Examples

In an effort to verify the derivation and numerical evalu-
ation of the analytical solutions presented in Table 2 some
simple cases were examined qualitatively. Note that any
consistent set of units can be used for the parameter values
and that, unless specified otherwise, R = l and u = A = 0.
Furthermore, for the (two-dimensional) illustrations we ar-
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TABLE 2b. Expressions for Parameters in Analytical Solutions in Table 2a

Parameter Expression
r y 5
r f f
(7) erfc l(4DyT/R)”2J erfc [(4DZT/R)1/2J
r . y—a " y+a ‘ z-b i z+b
(") e \@,-m7) ~ @by || \avam ™)~ \apm
Z(p. 1) pR ex _R(r2+p2) I Rrp
=te an,r P\""apn.n )\,
R 112 Rx — 2
Ar(r) exp (A7 - D
47D, 1 R 4RD.T
nT [ vr — Rx vXx Rx + vt
Ay(T) exp —F .erfc W — exp D_x erfc W
Ax(7) \[{ R 172 (R)c—vv')2 v VX . Rx + vr \]
(7 PATR)\wor) TP\ "TarDr )20, P \b,) " \4rRD D™
nT [ vr — Rx v vx Rx +vr
A7) exp —? .CrfC W + 1+D—x(x+VT/R) exp lTx erfc (W
4p2r |12 (Rx — vr1)?
_ exp [ —————
7RD, 4RD 7
Ag) ex _mT orf R(x —x3) — vt et R(x —x|)— vt N vx " R(x +x,) + vt
s P\TR N\ T@rD)™ )T\ T@rp™ | TP \D )\ T arD 07
R(x +x)+ vt
—erfc | ———75—
(4RD,2)
nT vx v R(x +x,) + vt
Ag(7) exp -‘R—’ exp D_X 1+D_x(x +x; + vt/R) | erfc TRD—XI)T
v R(x +x5) + vt
- 1+17x(x+x2+vt/R) erfc —W
v ort R(x —x;) — vt ] R(x —x;) — vt . 4v2 \'? vx [R(x + x;) + vt]?
erfc | ——————1| - — -
GrRD . |~ "\ T 4rD. "7 =rD,| “FPlp || 4RD 1t
( [R(x +x;) + Vt]z)”
—exp |-
4RD

bitrarily used y for the transverse coordinate; identical
results would have been obtained if z were used for this
purpose.

First, the part of the solution that depends on x (i.e., the
effect of longitudinal dispersion and advection) is investi-
gated. This is done for a rectangular coordinate system
where solute is applied over the entire soil surface (i.c., case
2 with a and b — =), or where solute is incorporated in an
infinite layer between x| and x, (i.e., case 3 witha and b —
). The problem is in effect one-dimensional and analytical

solutions are readily available. Indeed, the resulting expres-
sions for case 2 (F2 and T2, where F denotes “‘first-type”
and T “third-type” solution) are identical to solutions Al
and A2 by van Genuchten and Alves [1982] while the
expressions for cases F3 and T3 correspond to solutions AS
and A6 by van Genuchten and Alves. Furthermore, we
checked whether first- and third-type solutions obey the
proper transformation in the concentration mode. As dis-
cussed by van Genuchten and Parker [1984] the use of a
third-type condition for volume-averaged concentrations
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Fig. 2.

and z = —5 using » = 50, D, = 20, D, = D,
corresponds to the use of a first-type condition for flux-
averaged concentrations. Therefore one can obtain first-type
from third-type solutions, and vice versa, using the transfor-
mations [cf. van Genuchten et al., 1984; Batu and van
Genuchten, 1990}

D, aCy
Cr=Crmor

v vx = vé
Cr= p. &xP (b_) f exp (—D—)CF(E) d§ (34b)

X

(34a)

The subscripts F and T denote first- and third-type condi-
tions, corresponding to flux- and volume-averaged concen-
trations, respectively. We verified that these transformations
are consistent with solutions (19) and (31).

Second, the part of the solution that depends on y and z or
r (i.e., the effect of transverse dispersion) is investigated.
For cases 1, 2, and 4 we examined steady state transport
while ignoring longitudinal dispersion [cf. Harleman and
Rumer, 1963]. Such solutions may be useful to determine the
transverse dispersion coefficients experimentally. The fol-
lowing solutions were obtained:

Case 1

C,
Clx,y,2)= Y erfc

y " z
— 7 ledde |———
(4D, xtv)'"? 4D x/v)"?

(35)

Comparison of steady state solutions with results for (a) case 1, (b) case 2, and (c) case 4 at ¢
=D =

=2,x =50,
,=10,u=A=0,R=1,anda=b =75

Case 2
c G e y—a " yta
(o =g et \GD ) ®) ~ T \GD i
" z+b
(40 xlv )”2 ~ N @D A (36)
Case 4
a vpC, v(r® + p2) vrp
Clx, r) = - 1 d
(x. 1) L 2D, x exp( aD,x | °\2p,x) °F

37

Figure 2 shows the results for these steady state solutions, as
well as the transverse concentration profiles calculated with
the equations in Table 2 assuming large times. The corre-
spondence between the two sets of solutions is excellent.
Note that the difference between the use of a first- and
third-type condition is negligible at large times.

Third, the effect of the inlet condition (first versus third
type) is investigated. Consider the application of solute free
water to an effectively one-dimensional medium where the
solute is initially uniformly distributed between x; and x,
(case 3 with a and b approaching infinity). The concentration
profile is computed for various times using the two different
inlet conditions. Figure 3 shows the results for » = 50 (3a)
and » = 0 (3b) with the same hypothetical value for D, at
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z=0fort=05ands=1withD, =100, D, = D. =10, u =

y =
A=0,R=1,x;,=5andx, = 25and a = b = 7.5 for case T3 and F3 (using first- and third-type inlet conditions):

(a) v=50and (b) » = 0.

t = 0.5 and 1. In the first case the first- and third-type
concentration profiles are virtually identical whereas for no
flow the differences between the two concentration profiles
are substantial, particularly close to the inlet. The restriction
that C|,_¢+ = O for a first-type condition results in lower
predicted concentrations for a first than a third-type condi-
tion. To illustrate the effect of the inlet condition for a
three-dimensional system, consider the application of solute
over a rectangular area at the surface to an initially solute
free soil using D, 100 and » = 10. Figure 4 shows
concentration profiles in the transverse y direction for vari-
ous values of x at ¢+ = 1 for a first- and third-type boundary
condition. Notice that the first-type condition implies that
Cly=¢+ = C,, and that now the third-type condition predicts

—--FIRST TYPE
——THIRD TYPE

X 30 -20

Fig. 4. Dimensionless concentration versus longitudinal and
transverse direction (y) at z = 0 and ¢t = 1 for cases F2 (first type)
and T2 (third type) using v = 10, D, = 100, D, = D, = 10, p =
A=0,R=1,anda = b =17.5.

lower concentrations. For volume-averaged concentrations
the first-type condition (dashed line) overestimates the
amount of solute in the profile [cf. van Genuchten and
Parker, 1984]. The error in the mass balance caused by
improper use of boundary conditions will be pursued in the
next section. Unless stated otherwise, we will, from now on,
use only third-type inlet conditions.

Fourth, the ADE is reduced to the classical heat or
diffusion equation by assuming that » = 0. Concentration
profiles were derived for case 3 where the solute was
incorporated between x, and x,. Figure 5 illustrates solute
movement as a result of diffusion from the ‘*buried’’ solute
source. In Figure Sa the concentration is plotted versus
depth (x) and in the transverse direction (y), whereas
Figure 5b contains solute concentration profiles in the xy
plane. Because the source is located close to the surface, a
nonsymmetrical solute profile develops in the x direction.

The last part of this section includes some illustrative
examples. Consider again the spreading of a solute initially
confined to a parallelepipedal area of the soil (case 3). In
Figure 6a the solute concentration is plotted versus depth
below the soil surface (x) and the transverse direction (y)
for different times. The concentration profile is in this
example also symmetrical to the x direction. A reduction in
the maximum concentration and the increased longitudinal
and lateral spreading of the solute with increasing time can
clearly be observed. Figure 65 provides a planar view of a
soil section with lines of equal concentrations as contours
corresponding to the times given in Figure 6a.

The following two examples deal with radial transport.
Figure 7a shows the development of a solute plume as a
result of solute application from a circular area at the soil
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Fig. 5. Concentration distributions obtained for case T3 at z = 0 for + =
b=17.5 x; =5and x; = 15: {a) C/C, plotted as a function of x

=D,=D,=10,p=A=0R=1,a=

X
and y and (b) lines of equal C/C,, plotted in the xy plane.

surface (case 4), whereas Figure 7b gives contours of the
concentration in the radial plane for different depths. Figure 8
provides similar information for case 5, which assumes that the
solute is initially present in a cylindrical region of the soil.
Thus far we assumed that zero- and first-order rate pro-
cesses could be ignored (A = pu = 0). It is of interest to
examine the influence of zero-order production and first-
order decay on the solute distribution. Concentration distri-
butions were determined for cases T1 and T3 using similar
values for A and u as van Genuchten [1981]. Figure 9
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0,71=20.5,and ¢t = 1 with » = 0,

contains the results for case T2 using different values for the
production term, A, and no decay (Figure 9a) or various
decay rates, u, without production (Figure 95). As can be
expected, greater values for A and u cause increases and
decreases in concentration, respectively. Figure 10 shows
similar curves for case T3. The curves correspond to those
presented by van Genuchten [1981]. Note that we assumed
positive values for A and u. The source term A can be
immediately transformed into a sink by using negative val-
ues. A similar change in sign is possible for the decay rate .



LEU ET AL.: ANALYTICAL SOLUTIONS FOR SEMI-INFINITE POROUS MEDIA

2729

IOE ’
ool L
[e} 10 20 30 40 50 60 70

Fig. 6. Concentration distributions obtained for case T3 at z =
D,=20,D,=D, =10, u=2=0,R=1,a=b=75x;=

Ofort =0,¢t=20.5,and 1t = | with v = 50,
5 and x; = 15: (a) C/C, plotted as a function

of x and y and (b) lines of equal C/C, plotted in the xy plane.

The above examples illustrate the usefulness of analytical
solutions for predicting or simulating solute movement. The
solutions may also be used for determining transport param-
eters from solute displacement experiments with nonlinear
curve-fitting techniques [e.g., Kool et al., 1987).

Mass BALANCE CONSTRAINTS

A secondary objective of this study was to investigate
mass balance constraints and to formulate potential errors
when improper boundary conditions are applied for the
analytical solution (notably the first- and third-type inlet
conditions). To formulate the mass balance constraint for
steady water flow, we assume that the amount of solute
entering the soil is determined solely by advection in the
influent solution. Following van Genuchten and Parker
[1984], the relative mass balance “‘error’’ for cases 1, 2, and
4 is [cf. Batu and van Genuchten, 1990):

foijx C(x,y, z,t)dy dz dx
1] —-x,) —x
E, =
t = e
ff f vC@, y, z, t) dy dz dt
0J —xJ —x

while for cases 3 and 5 (i.e., solute incorporated in the soil
profile) the error can be defined as:

-1

(38)

fxfo'x C(x,y, z, 1) dy dz dx)

0 —xJ —2

E, = —
f f f C(x,y,2,0) dy dz dx
1] —xcJ ~x

To investigate differences in the use of a first- and a third-type
condition we will obtain expressions for E, for cases 2 and 3
using both inlet conditions, and assuming u = A = 0.

First, examine the case of solute application to an initially
solute-free soil profile. After substitution of solution F2 into
(38) and subsequent integration we obtained

R {? 1 1+1 . 0
Er—zgv;;exP 3 +2§2_ 2022 erfc ({) (40)

where
v
€= \4rD,

This expression is identical to (10) of van Genuchten and
Parker [1984]; the first-type condition overestimates the total
amount of solute in the soil profile. The similarity shows that
the mass balance error is not affected by transverse disper-

1 (39)

41)
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Fig. 7. Concentration distributions obtained for case T4 with »
=50,D,=20,D, =10, u=A=0,R=1,andg = 7.5: (a)
concentration contours in the x# plane at + = 0.5 and 1 and (&)
concentration contours in the transverse yz plane at 1 = 1.

sion, nor by the geometry of the application area in our
study. In a similar fashion we derived that £, = 0, as it
should be, for solution T2. These results correspond to the
findings by Batu and van Genuchten [1990] for two-
dimensional transport. Figure 11 shows the value of E, as a
function of ¢ for a first-type condition.

Now consider application of solute free water to a soil
with a uniform initial distribution in a parallelepiped with
lengths 2a, 2b, and x, — x; (case 3). The mass balance error
was obtained by integrating (13) with respect to x and
applying £, ! and ¥ !, respectively. The expression for E,
was subsequently obtained according to (39). For a first-type
condition E, is given by

1 1
Er: 2(—(‘)2—-—. w—]") [(wl + g + 4*{) erfc [(0‘ + {]

1 1
—(w2+§+— erfc [w, + {1+ =
4 VT

- (exp [—(wy + )] - exp [—(w, + O]

1
+ i (exp (—4¢w,) erfc {w; — ¢]

—exp (—4{w) erfc [w '(])} (42)
where
Rx,'2 )
w; = D (i=1,2) 43)

The error is again not influenced by transverse dispersion
but does depend on the locations x| and x,. For a third-type
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condition we verified that £, = 0. The ‘“‘error” for a
first-type condition (42) was plotted as a function of w; and
w, for various ¢ in Figure 12. The error can be quite
significant for small values of w; and ¢ if the solute is initially
present in a region close the soil surface (i.e., x, — x; is
small). The first-type condition underestimates the total
amount of solute in the soil since it permits backdiffusion
through the soil surface (this condition does not stipulate a
“zero flux at x = 0). However, results suggest that for
most practical cases the value for E, will be relatively small.

SUMMARY AND CONCLUSIONS

Solute transport in semi-infinite homogeneous porous me-
dia was modeled analytically for one-dimensional flow as-
suming linear retardation, a zero-order sink/source term, a
first-order production/decay term, and using a first- or third-
type condition at the inlet. The governing partial differential
equation was solved in a straightforward manner for general
inlet and initial solute distributions by applying a Laplace
transform with respect to x and ¢, a double Fourier trans-
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Fig. 7. (continued)
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Fig. 8. Concentration contours in the xr plane at7 = 0, 0.5, and
1 for case TS with v = 50, D, =20, D, =10, u = A =0, R =
l,x, =5and x, = 15, and a = 7.5.

form with respect to y and z for a Cartesian coordinate
system, and a Hankel transform for a cylindrical coordinate
system. The solute concentration in the real space and time
domain was obtained by solving the ensuing algebraic equa-
tion and applying the appropriate inverse integral trans-
forms. The general solutions for the first- and third-type
conditions were used to derive expressions for the concen-
tration distribution for five specific cases.

Mass balance errors were derived for solute application
from a rectangular area at the surface to an initially solute-

80 100

Fig. 9. Concentration distribution for case Tlatt =1,z =y =
—5usingv=1350,0,=20,D, =D, =10,and R = |: (a) different
production terms and zero decay and (b) different decay rates and
zero production.
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Fig. 10. Concentration distribution for case T3 with x; = S and
xa =15 ande =b=75atr=1,andz =y = 0 using v = 50,
D, =20.D,=D.= 10, and R = |: (u) different production terms
and zero decay and (b) different decay rates and zero production.

free soil profile, as well as for application of solute-free water
to a sotl where the solute was initially uniformly distributed
in a parallelepipedal area just below the soil surface. For
solute application adoption of a first-type inlet condition was
shown to lead to mass balance errors in terms of the
volume-averaged concentration, whereas the analytical so-
lution derived for a third-type condition obeyed the mass
conservation principle. For a first-type condition, mass
balance errors for the initial distribution of the solute de-
pended on the position below the soil surface where the
solute was initially present. Solutions obtained for third-type
conditions again conserved mass.
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Fig. 11. Relative mass balance error E, versus ¢ for case F2.
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Fig. 12. Relative mass balance error E, versus w; and w, for

various { for case F3.

APPENDIX: EVALUATION OF VARIABLES IN (12)

For the first-type condition, dC??/dx(0, a, B, 5) needs to
be evaluated, whereas for a third-type condition C¥%(0, a,
B, s) should be known. This is accomplished by using outlet
condition (4). Differentiation of (12) yields

dC—)’Z
dx

(x, a, B, 5)=[(1 — 8)g’* + 8C’Y(0, a, B, 5)]

exp (—Ax)

5 {(B* + A®) sinh (Bx) — 2AB cosh (Bx)}

dc vg"

0”a_
dx( a, B, s) D,

exp (—Ax)
B

+[(l - 8)

R
-{B h (Bx) — A sinh (Bx)} +
{B cosh (Bx) sinh (Bx)} 3D

X

exp [-A(x - §)]

x AY?
'J;l:fy(gsa’ﬂ)-l';;

-{A sinh [B(x — £§)] — B cosh [-A(x — £)]} d¢ (Al

where differentiation of the integral was carried out with
Leibnitz’ rule. Converting cosh and sinh to exponential form
and multiplying (A1) by 2B exp [(A — B)x] leads to
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oL L]

2B exp [(A ~B)x] —

=[(1-8)g"*+8C’%(0, a, B, 5)]

-{(BX+A%[1~ exp (—2Bx)] —2AB[1 + exp (—2Bx)}}

r

+1(1—a)

€ 0 il
9 a 9 * s -
dx A D, J

R
«{B[1+ exp (=2Bx)]— A[1 - exp (-28x)]}+b—

X

el A Y?]

. J [f”(f, a, B) + ;—J exp (A&){Alexp (-B¢)
0 Ay

— exp (B(£ — 2x))] — Blexp (-B¢)

+ exp (B(¢ — 2x))1} d¢
Taking x — «, using (4) and dividing by (B — A) leads to

(A2)

[(1 - 8)g** + 8C?%(0, a, B, 5)|(B - A)

~yz Vg7
+ [(l - 8) ax 0, a, B, 5) ~ D,
R [« AY?
—D—xfo [f”(fy a, B)+ EJ exp [£(A - B)]¢=0
(A3)
Hence, for a first-type condition (8 = 0),
X 0 a B f (f"(f, a, B)+ A—y—)
dx D, ), Rs
exp [£(A — B)] d¢ — (A + B)g”™* (A4)

and for a third-type condition (8§ = 1),

0

1 x
Y2 = =X
C*(0, a, B, s) (B—A)Dx{yg y+f (Rf”(é, a, B)

AV
+ —) exp [£(A ~ B)] dE} (AS)

s
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